
©2020 Eclypsium, Inc.1

Eclypsium researchers, Mickey Shkatov and Jesse Michael, have
discovered a vulnerability — dubbed “BootHole” — in the GRUB2 bootloader
utilized by most Linux systems that can be used to gain arbitrary code
execution during the boot process, even when Secure Boot is enabled.
Attackers exploiting this vulnerability can install persistent and stealthy
bootkits or malicious bootloaders that could give them near-total control
over the victim device.

The vulnerability affects systems using Secure Boot, even if they are
not using GRUB2. Almost all signed versions of GRUB2 are vulnerable,
meaning virtually every Linux distribution is affected. In addition, GRUB2
supports other operating systems, kernels and hypervisors such as Xen.
The problem also extends to any Windows device that uses Secure Boot
with the standard Microsoft Third Party UEFI Certificate Authority. Thus
the majority of laptops, desktops, servers and workstations are affected,
as well as network appliances and other special purpose equipment used
in industrial, healthcare, financial and other industries. This vulnerability
makes these devices susceptible to attackers such as the threat actors
recently discovered using malicious UEFI bootloaders.

Eclypsium has coordinated the responsible disclosure of this vulnerability
with a variety of industry entities, including OS vendors, computer
manufacturers, and CERTs. Mitigation will require new bootloaders to be
signed and deployed, and vulnerable bootloaders should be revoked to
prevent adversaries from using older, vulnerable versions in an attack. This
will likely be a long process and take considerable time for organizations
to complete patching.

TABLE OF CONTENTS

Background: Secure Boot, GRUB2, and CAs . 2

 Threats to the Boot Process . 2

 UEFI Secure Boot . 2

 Chains of Trust and GRUB2 . 2

 Challenges of Secure Boot . 3

Breaking Secure Boot Through GRUB2 . 4

 Vulnerability Analysis . 4

 Additional Vulnerabilities . 7

 Impact . 7

Mitigation . 7

 Recommendations . 8

Conclusions . 8

THERE’S A HOLE IN THE BOOT
“BootHole” vulnerability in the GRUB2 bootloader opens up Windows and Linux
devices using Secure Boot to attack. All operating systems using GRUB2 with

Secure Boot must release new installers and bootloaders.

BootHole

https://twitter.com/ESETresearch/status/1275770256389222400
https://twitter.com/ESETresearch/status/1275770256389222400

©2020 Eclypsium, Inc.2

Background: Secure Boot, GRUB2,
and CAs
Secure Boot can be a fairly deep and technical topic. Our goal here is to
give a high-level introduction to the key concepts relevant to this research
without going into all the granular details. We have included a variety
of external links to provide additional information for those interested.
Alternatively, you can go straight to the description of the vulnerability itself.

THREATS TO THE BOOT PROCESS
The boot process is one of the most fundamentally important aspects
of security for any device. It relies on a variety of firmware that controls
how a device’s various components and peripherals are initialized and
ultimately coordinates the loading of the operating system itself. In
general, the earlier code is loaded, the more privileged it is.

If this process is compromised, attackers can control how the operating
system is loaded and subvert all higher-layer security controls. Recent
research has identified ransomware in the wild using malicious EFI
bootloaders as a way to take control of machines at the time of boot.
Previously threat actors used malware tampering with legacy OS
bootloaders including APT41 Rockboot, LockBit, FIN1 Nemesis, MBR-ONI,
Petya/NotPetya, and Rovnix.

Additional information on threats to the modern PC boot process is
available in the “Bootkits and UEFI Secure Boot” section of the System
Firmware training.

UEFI SECURE BOOT
UEFI Secure Boot was originally developed by the UEFI Forum as a way
to protect the boot process from these types of attacks. There are other
implementations of secure boot designed for different environments,
but UEFI Secure Boot is the standard for PCs and servers. The goal is to
prevent malicious code from being introduced into the boot process by
cryptographically checking each piece of firmware and software before it is
run. Any code not recognized as valid is not executed in the boot process.

Secure Boot uses cryptographic signatures to verify the integrity of each
piece of code as it is needed during the boot process. There are two
critical databases involved in this process: the Allow DB (db) of approved
components and the Disallow DB (dbx) of vulnerable or malicious
components, including firmware, drivers, and bootloaders. Access to
modify these databases is protected by a Key Exchange Key (KEK), which
in turn is verified by a Platform Key (PK). Although the PK is used as a
root of trust for updates to the platform, it’s not expressly part of the boot
process (but is shown below for reference). It is dbx, db, and KEK that are
used to verify the signatures for loaded executables at boot time.

Additional details on the Secure Boot process can be found in this PDF.

CHAINS OF TRUST AND GRUB2
Next, OEMs must manage a list of who is permitted to sign code trusted
by the Secure Boot Database. Instead of having every OEM manage
certificates from every possible firmware, driver, or OS provider, Secure
Boot allows for the use of a centralized Certificate Authority (CA).
Microsoft’s 3rd Party UEFI CA provides the industry standard signing
service for Secure Boot. In short, third parties can submit their code
to Microsoft, and Microsoft will validate and sign the code with the
Microsoft CA. This establishes a chain of trust that only requires OEMs to
enroll the Microsoft 3rd Party UEFI CA to their platforms to enable them
to boot third-party installation media and operating systems by default
when Secure Boot is enabled.

This includes the ability to sign bootloaders from non-Microsoft operating
systems such as Linux. In almost every modern Linux distribution, GRUB
(the Grand Unified Bootloader) is the bootloader that loads and transfers
control to the operating system. In this document, all references to GRUB
are intended to refer to GRUB2, which was a complete rewrite from
the previous version commonly referred to as “GRUB Legacy.” Starting
in 2009, all widely used Linux distributions have transitioned to using
GRUB2. GRUB Legacy has been deprecated and is generally only found in
older releases.

Due to legal issues arising from license incompatibilities, open-source
projects and other third parties build a small application called a “shim,”
which contains the vendor’s certificate and code that verifies and runs the
bootloader (GRUB2). The vendor’s shim is verified using the Microsoft 3rd
Party UEFI CA and then the shim loads and verifies the GRUB2 bootloader
using the vendor certificate embedded inside itself.

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

Secure Boot Keys

Key Exchange Key

Platform Key

Update

If signed by key in db,
executable can be loaded

If signed by key in dbx,
executable load is forbidden

UpdateUpdate

Source: Eclypsium

https://twitter.com/ESETresearch/status/1275770256389222400
https://twitter.com/ESETresearch/status/1275770256389222400
https://attack.mitre.org/software/S0112/
https://news.sophos.com/en-us/2020/04/24/lockbit-ransomware-borrows-tricks-to-keep-up-with-revil-and-maze/
https://arstechnica.com/information-technology/2015/12/nemesis-malware-hijacks-pcs-boot-process-to-gain-stealth-persistence/
https://www.cybereason.com/blog/night-of-the-devil-ransomware-or-wiper-a-look-into-targeted-attacks-in-japan
https://us-cert.cisa.gov/ncas/alerts/TA17-181A
https://malpedia.caad.fkie.fraunhofer.de/details/win.rovnix
https://github.com/abazhaniuk/firmware-security-training/blob/master/BIOS-UEFI-Security.2-BootkitsSecureBoot.pdf
http://www.c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf
https://techcommunity.microsoft.com/t5/hardware-dev-center/updated-uefi-signing-requirements/ba-p/1062916
https://www.eclypsium.com/2020/07/29/theres-a-hole-in-the-boot/

©2020 Eclypsium, Inc.3

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

Allow Database (db)
Microsoft UEFI CA

Disallow Database (dbx)
Keys and hashes for
malicious code and

vulnerable components

Microsoft UEFI CA Vendor Shim

Vendor Certification

GRUB2 Bootloader

Secure Boot Database

Additional detail on the role of the Microsoft UEFI CA in the boot process is available here.

CHALLENGES OF SECURE BOOT
As with any technical process, Secure Boot is not without its potential
problems. The process involves many pieces of code, and a vulnerability
in any one of them presents a single point of failure that could allow an
attacker to bypass Secure Boot. Additionally, although UEFI Secure Boot
attempts to provide certain integrity guarantees to the boot process, other
misconfigurations of the hardware or missing protection features can
undermine boot security. One such example is a DMA attack using tools
such as PCIe Microblaze. Additionally, as we will show in this blog post, a
vulnerability in the boot process that enables arbitrary code execution can
allow attackers to control the boot process and operating system, even
when secure boot signatures are verified.

Attackers can also use a vulnerable bootloader against the system. For
example, if a valid bootloader was found to have a vulnerability, a piece of
malware could replace the device’s existing bootloader with the vulnerable
version. The bootloader would be allowed by Secure Boot and give the
malware complete control over the system and OS. Mitigating this requires
very active management of the dbx database used to identify malicious or
vulnerable code.

Bootloader Switch
Replace Existing Bootloader

with Vulnerable Version

Malware Execution Malicious Bootloader OS Compromised
The Operating System Appears
Normal Despite Compromise

Additionally, updates and fixes to the Secure Boot process can be particularly complex and run the risk of inadvertently breaking machines. The boot process
naturally involves a variety of players and components including device OEMs, operating system vendors, and administrators. Given the fundamental nature
of the boot process, any sort of problems run a high risk of rendering a device unusable. As a result, updates to Secure Boot are typically slow and require
extensive industry testing.

Source: Eclypsium

Source: Eclypsium

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance
https://eclypsium.com/2020/01/30/direct-memory-access-attacks/
https://github.com/Cr4sh/s6_pcie_microblaze
https://www.securityweek.com/microsoft-pulls-uefi-related-windows-update-after-users-report-problems
https://www.eclypsium.com/2020/07/29/theres-a-hole-in-the-boot/
https://www.eclypsium.com/2020/07/29/theres-a-hole-in-the-boot/

©2020 Eclypsium, Inc.4

Breaking Secure Boot Through GRUB2
In the course of Eclypsium’s analysis, we have identified a buffer overflow
vulnerability in the way that GRUB2 parses content from the GRUB2
config file (grub.cfg). Of note: The GRUB2 config file is a text file and
typically is not signed like other files and executables. This vulnerability
enables arbitrary code execution within GRUB2 and thus control over the
booting of the operating system. As a result, an attacker could modify
the contents of the GRUB2 configuration file to ensure that attack code
is run before the operating system is loaded. In this way, attackers gain
persistence on the device.

Such an attack would require an attacker to have elevated privileges.
However, it would provide the attacker with a powerful additional
escalation of privilege and persistence on the device, even with Secure
Boot enabled and properly performing signature verification on all loaded
executables. One of the explicit design goals of Secure Boot is to prevent
unauthorized code, even running with administrator privileges, from
gaining additional privileges and pre-OS persistence by disabling Secure
Boot or otherwise modifying the boot chain.

With the sole exception of one bootable tool vendor who added custom
code to perform a signature verification of the grub.cfg config file in
addition to the signature verification performed on the GRUB2 executable,
all versions of GRUB2 that load commands from an external grub.cfg
configuration file are vulnerable. As such, this will require the release of
new installers and bootloaders for all versions of Linux. Vendors will need
to release new versions of their bootloader shims to be signed by the
Microsoft 3rd Party UEFI CA. It is important to note that until all affected
versions are added to the dbx revocation list, an attacker would be able
to use a vulnerable version of shim and GRUB2 to attack the system. This
means that every device that trusts the Microsoft 3rd Party UEFI CA will be
vulnerable for that period of time.

In addition to vendors using shims signed by the Microsoft 3rd Party UEFI CA,
some OEMs that control both the hardware and the software stack in their
devices use their own key that is provisioned into the hardware at the factory
to sign GRUB2 directly. They will need to provide updates and revocation of
previous vulnerable versions of GRUB2 for these systems as well.

This vulnerability was assigned CVE-2020-10713 “GRUB2: crafted grub.cfg
file can lead to arbitrary code execution during boot process” with a CVSS
rating of 8.2 (High) / CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H.

Click here to go straight to the Impact and Mitigations sections.

VULNERABILITY ANALYSIS
The vulnerability is a buffer overflow that occurs in GRUB2 when parsing
the grub.cfg file. This configuration file is an external file commonly
located in the EFI System Partition and can therefore be modified by an
attacker with administrator privileges without altering the integrity of
the signed vendor shim and GRUB2 bootloader executables. The buffer

overflow allows the attacker to gain arbitrary code execution within the
UEFI execution environment, which could be used to run malware, alter the
boot process, directly patch the OS kernel, or execute any number of other
malicious actions.

To dig a little deeper into the vulnerability itself, we’ll take a closer look
at how the code works internally. In order to process commands from
the external configuration file, GRUB2 uses flex and bison to generate
a parsing engine for a domain-specific language (DSL) from language
description files and helper functions.

This is generally considered to be a better approach than manually writing
a custom parser for each DSL. However, GRUB2, flex, and bison are all
complex software packages with their own design assumptions that can
be easy to overlook. And those mismatched design assumptions can
result in vulnerable code.

The parser engine generated by flex includes this define as part of the
token processing code:

In this macro, the generated code detects that it has encountered a
token that is too large to fit into flex’s internal parse buffer and calls
YY_FATAL_ERROR(), which is a helper function provided by the
software that is using the flex-generated parser.

However, the YY_FATAL_ERROR() implementation provided in the
GRUB2 software package is:

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

#define YY_DO_BEFORE_ACTION \
 yyg->yytext_ptr = yy_bp; \
 yyleng = (int) (yy_cp - yy_bp); \
 yyg->yy_hold_char = *yy_cp; \
 *yy_cp = ‘\0’; \
 if (yyleng >= YYLMAX) \
 YY_FATAL_ERROR(“token too large, exceeds
 YYLMAX”); \
 yy_flex_strncpy(yytext, yyg->yytext_
 ptr, yyleng + 1 , yyscanner); \
 yyg->yy_c_buf_p = yy_cp;

#define YY_FATAL_ERROR(msg) \
 do { \
 grub_printf (_(“fatal error: %s\n”),
 _(msg)); \
 } while (0)

©2020 Eclypsium, Inc.5

Beyond just this specific path, a number of additional places throughout the
flex-generated code also expect that any calls to YY_FATAL_ERROR()
never return and perform unsafe operations when that expectation is
broken. Mismatched assumptions between producers and consumers of
an API are a very common source of vulnerabilities.

Ultimately, by providing a configuration file with input tokens that are too
long to be handled by the parser, this buffer overflow overwrites critical
structures in the heap. These overwritten fields include internal parser
structure elements, which can be used as an arbitrary write-what-where
primitive to gain arbitrary code execution and hijack the boot process.

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

Heap
grub.cfg (In Buffer)

insmod part_gpt
insmod ext2
search --no-floppy --fs-uuid --set=root 12f94e83-3403-44f8-ae7d-66cd06d96e3b
AAA
BBB
linux /vmlinuz-5.4.0-40-generic root=/dev/mapper/ubuntu--vg-root ro
initrd /initrd.img-5.4.0-40-generic

Contents of grub.cfg are read from disk into heap buffer and then parsed by vulnerable code resulting in
overflow of internal parser structure.

Internal Parser Structure
(with Fixed Buffer Size)

AAA

Rather than halting execution or exiting, it just prints an error to the console and returns to the calling function. Unfortunately, the flex code has been
written with the expectation that any calls to YY_FATAL_ERROR() will never return. This results in yy_flex_strncpy() being called and copying
the source string from the configuration file into a buffer that is too small to contain it.

Source: Eclypsium

https://www.eclypsium.com/2020/07/29/theres-a-hole-in-the-boot/

©2020 Eclypsium, Inc.6

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

Of further note, the UEFI execution environment does not have Address
Space Layout Randomization (ASLR) or Data Execution Prevention (DEP/
NX) or other exploit mitigation technologies typically found in modern
operating systems, so creating exploits for this kind of vulnerability is
significantly easier. The heap is fully executable without the need to build
ROP chains.

Finally, rather than being architecture-specific, this vulnerability is in a
common code path and was also confirmed using a signed ARM64
version of GRUB2.

Heap

insmod part_gpt
insmod ext2
search --no-floppy --fs-uuid --set=root 12f94e83-3403-44f8-ae7d-66cd06d96e3b
AAA
BBB
linux /vmlinuz-5.4.0-40-generic root=/dev/mapper/ubuntu--vg-root ro
initrd /initrd.img-5.4.0-40-generic

Fields overwritten in internal parse structure can be used to write arbitrary data anywhere in memory.

Internal Parser Structure
(with Fixed Buffer Size)

AAA

Fields that Control
Destination of Next Copy

Other Critical Structures
(Anywhere in Memory)

BBB

grub.cfg (In Buffer)

Source: Eclypsium

https://www.eclypsium.com/2020/07/29/theres-a-hole-in-the-boot/

©2020 Eclypsium, Inc.7

ADDITIONAL VULNERABILITIES
There have been a couple of examples of previous vulnerabilities found
in GRUB2 that result in arbitrary code execution, but with a much
smaller scope.

In April 2019, a vulnerability in how GRUB2 was used by the Kaspersky
Rescue Disk was publicly disclosed. In February 2020, more than six
months after a fixed version had been released, Microsoft pushed an
update to revoke the vulnerable bootloader across all Windows systems
by updating the UEFI revocation list (dbx) to block the known-vulnerable
Kaspersky bootloader. Unfortunately, this resulted in systems from
multiple vendors encountering unexpected errors, including bricked
devices, and the update was removed from the update servers.

Additionally, in May 2020, Dmytro Oleksiuk disclosed that certain HPE
ProLiant servers contained a version of GRUB2 signed by a HP CA that
allows the use of the “insmod” command to load unsigned code. This issue
was assigned CVE-2020-7205 and is also embargoed until July 29th.

In response to our initial vulnerability report, additional scrutiny was
applied to the GRUB2 code and a number of additional vulnerabilities
were discovered by the Canonical security team:

 • CVE-2020-14308 GRUB2: grub_malloc does not validate allocation
size allowing for arithmetic overflow and subsequent heap-based
buffer overflow
 —6.4 (Medium) / CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H

 • CVE-2020-14309 GRUB2: Integer overflow in grub_squash_read_
symlink may lead to heap based overflow
 —5.7 (Medium) / CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:H

 • CVE-2020-14310 GRUB2: Integer overflow read_section_from_string
may lead to heap based overflow
 —5.7 (Medium) / CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:H

 • CVE-2020-14311 GRUB2: Integer overflow in grub_ext2_read_link
leads to heap based buffer overflow,
 —5.7 (Medium) / CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:H

 • CVE-2020-15705 GRUB2: avoid loading unsigned kernels when grub
is booted directly under secureboot without shim
 —6.4 (Medium) /CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H

 • CVE-2020-15706 GRUB2 script: Avoid a use-after-free when
redefining a function during execution
 —6.4 (Medium) /CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H

 • CVE-2020-15707 GRUB2: Integer overflow in initrd size handling.
—5.7 (Medium) /CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:H/A:H

Given the difficulty of this kind of ecosystem-wide update/revocation,
there is a strong desire to avoid having to do it again six months later.
To that end, a large effort — spanning multiple security teams at Oracle,

Red Hat, Canonical, VMware and Debian — using static analysis tools and
manual review helped identify and fix dozens of further vulnerabilities
and dangerous operations throughout the codebase that do not yet have
individual CVEs assigned.

IMPACT
Due to a weakness in the way GRUB2 parses its configuration file, an
attacker can execute arbitrary code that bypasses signature verification.
The BootHole vulnerability discovered by Eclypsium can be used to install
persistent and stealthy bootkits or malicious bootloaders that operate
even when Secure Boot is enabled and functioning correctly. This can
ensure attacker code runs before the operating system and can allow the
attacker to control how the operating system is loaded, directly patch the
operating system, or even direct the bootloader to alternate OS images.
It gives the attacker virtually unlimited control over the victim device.
Malicious bootloaders have recently been observed in the wild, and this
vulnerability would make devices susceptible to these types of threats.

All signed versions of GRUB2 that read commands from an external
grub.cfg file are vulnerable, affecting every Linux distribution. To date,
more than 80 shims are known to be affected. In addition to Linux
systems, any system that uses Secure Boot with the standard Microsoft
UEFI CA is vulnerable to this issue. As a result, we believe that the majority
of modern systems in use today, including servers and workstations,
laptops and desktops, and a large number of Linux-based OT and IoT
systems, are potentially affected by these vulnerabilities.

Additionally, any hardware root of trust mechanisms that rely on UEFI
Secure Boot could be bypassed as well.

Mitigation
Full mitigation of this issue will require coordinated efforts from a variety
of entities: affected open-source projects, Microsoft, and the owners of
affected systems, among others. This will include:

 1. Updates to GRUB2 to address the vulnerability.

 2. Linux distributions and other vendors using GRUB2 will need to
update their installers, bootloaders, and shims.

 3. New shims will need to be signed by the Microsoft 3rd Party
UEFI CA.

 4. Administrators of affected devices will need to update installed
versions of operating systems in the field as well as installer images,
including disaster recovery media.

 5. Eventually the UEFI revocation list (dbx) needs to be updated in the
firmware of each affected system to prevent running this vulnerable
code during boot.

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

https://habr.com/en/post/446238/
https://www.windowslatest.com/2020/02/15/windows-10-kb4524244-issues/
https://twitter.com/d_olex/status/1264238411679887360
https://twitter.com/ESETresearch/status/1275770256389222400
https://uefi.org/revocationlistfile

©2020 Eclypsium, Inc.8

On the Coordinated Release Date (CRD) of July 29, we expect to see
advisories and/or updates from the following affected parties:

 • Microsoft
 • UEFI Security Response

Team (USRT)
 • Oracle
 • Red Hat (Fedora and RHEL)
 • Canonical (Ubuntu)
 • SuSE (SLES and openSUSE)
 • Debian

 • Citrix
 • VMware
 • Various OEMs
 • Software vendors, including

security software, are also
impacted by this vulnerability
and will be updating their
bootloaders.

 • … more to be added once we
have a full list ...

However, full deployment of this revocation process will likely be very slow.
UEFI-related updates have had a history of making devices unusable, and
vendors will need to be very cautious. If the revocation list (dbx) is updated
before a given Linux bootloader and shim are updated, then the operating
system will not load. As a result, updates to the revocation list will take
place over time to prevent breaking systems that have yet to be updated.
There are also edge cases where updating the dbx can be difficult, such
as with dual-boot or deprovisioned machines. When any OS is installed or
launched, the bootloader and OS need to be updated before the revocation
is applied to the system.
Further complicating matters, enterprise disaster recovery processes
can run into issues where approved recovery media no longer boots on a
system if dbx updates have been applied. In addition when a device swap
is needed due to failing hardware, new systems of the same model may
have already had dbx updates applied and will fail when attempting to boot
previously-installed operating systems. Before dbx updates are pushed
out to enterprise fleet systems, recovery and installation media must be
updated and verified as well.

Microsoft will be releasing a set of signed dbx updates, which can be
applied to systems to block shims that can be used to load the vulnerable
versions of GRUB2. Due to the risk of bricking systems or otherwise
breaking operational or recovery workflows, these dbx updates will
initially be made available for interested parties to manually apply to their
systems rather than pushing the revocation entries and applying them
automatically. This will allow IT professionals, enthusiasts, and others the
opportunity to test the revocation updates on their individual systems and
identify any issues before making the revocations mandatory.

Organizations should additionally ensure they have appropriate capabilities
for monitoring UEFI bootloaders and firmware and verifying UEFI
configurations, including revocation lists, in their systems. Organizations
should also test recovery capabilities as updates become available,
including the “reset to factory defaults” functionality in the UEFI setup. This
will ensure that they can recover devices if a device is negatively impacted
by an update. Finally, organizations should be monitoring their systems
for threats and ransomware that use vulnerable bootloaders to infect or
damage systems.

RECOMMENDATIONS

 1. Right away, start monitoring the contents of the bootloader partition
(EFI system partition). This will buy time for the rest of the process
and help identify affected systems in your environment. For those
who have deployed the Eclypsium solution, you can see this
monitoring under the “MBR/Bootloader” component of a device.

 2. Continue to install OS updates as usual across desktops, laptops,
servers, and appliances. Attackers can leverage privilege escalation
flaws in the OS and applications to take advantage of this
vulnerability so preventing them from gaining administrative level
access to your systems is critical. Systems are still vulnerable after
this, but it is a necessary first step. Once the revocation update is
installed later, the old bootloader should stop working. This includes
rescue disks, installers, enterprise gold images, virtual machines, or
other bootable media.

 3. Test the revocation list update. Be sure to specifically test the same
firmware versions and models that are used in the field. It may help
to update to the latest firmware first in order to reduce the number
of test cases.

 4. To close this vulnerability, you need to deploy the revocation update.
Make sure that all bootable media has received OS updates first,
roll it out slowly to only a small number of devices at a time, and
incorporate lessons learned from testing as part of this process.

 5. Engage with your third-party vendors to validate they are aware of,
and are addressing, this issue. They should provide you a response
as to its applicability to the services/solutions they provide you as
well as their plans for remediation of this high rated vulnerability.

Eclypsium has powershell and bash scripts available which can be used
to detect bootloaders that are being revoked by this dbxupdate.

Conclusions

While Secure Boot is easily taken for granted by most users, it is
the foundation of security within most devices. Once compromised,
attackers can gain virtually complete control over the device, its operating
system, and its applications and data. And as this research shows, when
problems are found in the boot process, they can have far-reaching
effects across many types of devices.

We will update this blog post as more information becomes available,
and we encourage users and administrators to closely monitor alerts and
notifications from their hardware vendors, the Microsoft MSRC, and any
relevant open-source projects.

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

https://www.securityweek.com/microsoft-pulls-uefi-related-windows-update-after-users-report-problems
https://github.com/eclypsium/BootHole/
https://www.microsoft.com/en-us/msrc

©2020 Eclypsium, Inc.9

JULY 30 IMPORTANT UPDATE
Some of the Linux distribution updates appear to be leading to unsuccessful reboots. The developers and distribution maintainers are working to provide new
updates. The maintainers are recommending to avoid installing updates for grub2, shim, and other bootloader-related applications until new packages are
available. Some of the issues to watch are listed below:

 https://access .redhat .com/security/vulnerabilities/grub2bootloader

 https://bugzilla .redhat .com/show_bug .cgi?id=1862045

 https://bugzilla .redhat .com/show_bug .cgi?id=1861977

 https://bugs .launchpad .net/ubuntu/+source/grub2/+bug/1889556

 https://bugs .debian .org/cgi-bin/bugreport .cgi?bug=966554

 https://status .cloud .google .com/incident/compute/20009#20009005

DEFENDING THE FOUNDATION
OF THE ENTERPRISE

REFERENCES
 Microsoft
 Security advisory: https://portal .msrc .microsoft .com/en-US/security-guidance/advisory/ADV200011

 UEFI Forum
 Updated Revocation List: https://uefi.org/revocationlistfile

 Debian
 Security advisory: https://www .debian .org/security/2020-GRUB-UEFI-SecureBoot

 Canonical:
 Security advisory: https://ubuntu .com/security/notices/USN-4432-1

 KnowledgeBase article: https://wiki .ubuntu .com/SecurityTeam/KnowledgeBase/GRUB2SecureBootBypass

 Red Hat
 Customer documentation: https://access .redhat .com/security/vulnerabilities/grub2bootloader

 CVE information: https://access .redhat .com/security/cve/cve-2020-10713

 Vulnerability response article: https://access .redhat .com/security/vulnerabilities/grub2bootloader

 SUSE
 Security advisory: https://www .suse .com/c/suse-addresses-grub2-secure-boot-issue/

 Knowledge Base article: https://www .suse .com/support/kb/doc/?id=000019673

 HP
 Security advisory: HPSBHF03678 rev . 1 - GRUB2 Bootloader Arbitrary Code Execution

 HPE
 Security advisory: https://techhub .hpe .com/eginfolib/securityalerts/Boot_Hole/boot_hole .html

 VMware
 Knowledge Base article: https://kb .vmware .com/s/article/80181

 NSA
 Cybersecurity advisory: https://media .defense .gov/2020/Jul/30/2002467902/-1/-1/0/CSA_MITIGATE_THE_GRUB2_BOOTHOLE_

VULNERABILITY_20200730_NSA_GOV%20-%20COPY .PDF

 Upstream Grub2 project
 GRUB2 Git Repository
 GRUB Developer Mailing List

https://access.redhat.com/security/vulnerabilities/grub2bootloader
https://bugzilla.redhat.com/show_bug.cgi?id=1862045
https://bugzilla.redhat.com/show_bug.cgi?id=1861977
https://bugs.launchpad.net/ubuntu/+source/grub2/+bug/1889556
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=966554
https://status.cloud.google.com/incident/compute/20009#20009005
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV200011
https://uefi.org/revocationlistfile
https://www.debian.org/security/2020-GRUB-UEFI-SecureBoot
https://ubuntu.com/security/notices/USN-4432-1
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/GRUB2SecureBootBypass
https://access.redhat.com/security/vulnerabilities/grub2bootloader
https://access.redhat.com/security/cve/cve-2020-10713
https://access.redhat.com/security/vulnerabilities/grub2bootloader
https://www.suse.com/c/suse-addresses-grub2-secure-boot-issue/
https://www.suse.com/support/kb/doc/?id=000019673
https://support.hp.com/us-en/document/c06707446
https://techhub.hpe.com/eginfolib/securityalerts/Boot_Hole/boot_hole.html
https://kb.vmware.com/s/article/80181
https://kb.vmware.com/s/article/80181
https://kb.vmware.com/s/article/80181
https://media.defense.gov/2020/Jul/30/2002467902/-1/-1/0/CSA_MITIGATE_THE_GRUB2_BOOTHOLE_VULNERABILITY_20200730_NSA_GOV%20-%20COPY.PDF
https://media.defense.gov/2020/Jul/30/2002467902/-1/-1/0/CSA_MITIGATE_THE_GRUB2_BOOTHOLE_VULNERABILITY_20200730_NSA_GOV%20-%20COPY.PDF
http://git.savannah.gnu.org/gitweb/?p=grub.git&view=view+git+repository
https://lists.gnu.org/mailman/listinfo/grub-devel/

